绿色制造专利技术领域及其专利撰写指南


来源:原创    浏览次数:126

绿色制造专利技术领域及其专利撰写指南

一、绿色制造专利技术领域

1、绿色产品设计评价系统模型的建立

(1)绿色产品设计理论和方法

从寿命周期角度对绿色产品的内涵进行全面系统的研究,提出绿色产品设计理论和方法。

(2)绿色产品的描述和建模技术

在绿色产品设计理论和方法的基础上,对绿色产品进行描述,建立绿色产品评价体系,在产品生命周期中,对所有与环境相关的过程输入输出进行量化和评价,并对产品生命周期中经济性和环境影响的关系进行综合评价,建立数学模型。

(3)绿色产品设计数据库

建立与绿色产品有关的材料、能源及空气、水、土、噪声排放的基础数据库,为绿色产品设计提供依据。

(4)典型产品绿色设计系统集成

针对具体产品,收集、整理面向环境设计的资料,形成指导设计的设计指南,建立绿色产品系统设计工具平台,并与其它设计工具(如CAD、CAE、CAPP等)集成,形成集成的设计环境。

2、绿色产品清洁生产技术

(1)节省资源的生产技术

本项目主要从减少生产过程中消耗的能量、减少原材料的消耗和减少生产过程中的其他消耗三方面着手研究。

(2)面向环保的生产技术

主要研究减少生产过程中的污染,包括减少生产过程的废料、减少有毒有害物质(废水、废气、固体废弃物等)、降低噪声和振动等。

(3)产品包装技术

包装是产品生产过程中的最后一个环节,产品包装形式、包装材料、以及产品贮存、运输等方面都要考虑环境影响的因素。

3、产品可拆卸、可回收技术

(1)产品可卸性技术

提出产品可卸性评价方法,提出产品可卸性评价指标体系,进行可拆卸结构模块划分和接口技术研究。

(2)产品可回收技术

提出可回收零件及材料识别与分类系统,并开展零件再使用技术研究,包括可回收零部件的修复、检测,使其符合产品设计要求,进行再使用(再使用包括同化再使用和异化再使用)技术、材料再利用技术的研究(包括同化再利用和异化再利用)。

4、机电产品噪声控制技术

(1)声源识别、噪声与声场测量以及动态测试、分析与显示技术;

(2)机器结构声辐射计算方法与程序;

(3)机器结构振动和振动控制技术;

(4)低噪声优化设计技术;

(5)低噪声结构和材料;

(6)新型减振降噪技术。

5、面向环境、面向能源、面向材料的绿色制造技术

(1)面向环境的绿色制造技术

研究使产品在使用过程中能满足水、气、固体三种废弃物减量化、降低振动与噪声等环境保护要求的相关技术。

(2)面向能源的绿色制造技术

研究能源消耗优化技术、能源控制过程优化技术等以达到节约能源、减少污染的目的。

(3)面向材料的绿色制造技术

研究材料无毒、无害化技术,针对高分子材料,研究废旧高分子材料回收的绿色技术,高分子过滤材料-功能膜材料,玻璃纤维毡增强热塑性复合材料等。对现有材料的环境性能改进技术等。

二、绿色制造专利撰写指南

1、专利文件撰写所需的基本知识:

(1)技术知识:我们通过各种信息化的渠道去了解和获取绿色制造的技术知识。不仅可以在网络上搜索到相关的知识,也可以通过书本、视频演示、实物参观等方式随时随地积累相关知识。

(2)创新思维:以新颖独创的方法解决问题的思维过程,通过这种思维能突破常规思维的界限,以超常规甚至反常规的方法、视角去思考问题,提出与众不同的解决方案,从而产生新颖的、独到的、有社会意义的思维成果

(3)法律知识:在专利文件的撰写中,我们要紧守“专利审查指南、专利法及其实施细则”里面的规章制度去帮助我们更好的撰写专利文件。

2、绿色制造专利的撰写构思所遵循的原则:

(1)绿色设计原则:资源最佳利用原则、能量消耗最少原则、零污染原则、零损害原则、技术先进原则、生态经济效益最佳原则。全生命周期资源消耗和环境影响最小,经济效益与环境协调优化。

(2)绿色制造工艺原则:减量化原则、再利用原则、再循环原则、替代原则。

3、绿色制造专利撰写流程:

专利撰写的流程具体分为:信息收集—分析—整理—加工与创新—撰写—形成专利文件—质量检查—质量提升。

信息来源渠道:客户提供的即时信息或soopat下载的参考文献、网络平台如百度等搜索的资料、日积月累的技术知识、引导客户追加的信息等;

分析:参照撰写构思所遵循的原则,对信息的可行性进行分析;

整理:对符合撰写构思所遵循的原则原则的信息进行整理分类;

加工与创新:将我们要写的专利结合符合原则的信息进行创新思维思考,找出与众不同的解决方案,从而达到绿色制造的共同目标,也就是使产品在设计、制造、包装、运输甚至在使用到报废处理的整个产品生命周期中对环境的影响(负作用)最小、资源利用率最高并使企业经济效益和社会效益协调优化;

撰写:撰写专利文件时我们要紧守公司关于专利撰写的格式标准,也要遵守国家知识产权局的专利审查指南的标准和专利法及其实施细则;

形成专利文件:在紧守格式标准、专利审查指南和专利法及其实施细则的前提下,运用我们的专利专业术语和绿色制造专业术语去撰写出专利;

质量检查:在撰写好专利文件后,结合绿色制造撰写构思所遵循的原则,根据公司的专利格式标准、国家知识产权局的专利审查指南和专利法及实施细则的规定对我们的专利文件进行审阅和检查,或者转发给客户进行检查,有所偏离绿色制造的目标或者客户意愿的,进行修正;

质量提升:发现专利文件错误的地方,不管是在某术语或文件的连贯性,甚至是整篇文件不符合客户构思或者没达到绿色制造的目标,都要仔细对待,哪怕是修改整篇文件,这都有利于未来遇到相同问题不会再错,有利于提升专利文件的质量。

4、绿色制造专利质量评价体系:

多看:绿色制造的最新专利、先进技术、研发成果(最近一两年)等;

多学:专利法、专利法实施细则、专利审查指南等;

多通:公司内部的管理思想、专利格式标准、专利撰写指南等;

多写:撰写参不同绿色制造技术领域的专利文件,有助应对不同客户的专利。

5、与客户技术信息的沟通技能:

(1)面对新客户时耐心解说,尽管你在这方面知识是否缺乏

(2)如果在新客户沟通之前有空余时间,快速熟悉客户公司的资料,包括专利情况

(3)尽量少打扰客户,一次性沟通到位

(4)学会教育与引导客户,培养长期客户和固定客户沟通模式

(5)不要抱怨客户,正因为客户不懂才找我们

(6)与客户保持一定的联系,主动问好,有没有相关的专利问题需要我们

三、绿色制造技术领域与工业化4.0的对接点

1、绿色产品设计评价系统模型的建立、绿色产品清洁生产技术、机电产品噪声控制技术和产品可拆卸可回收技术与智能工厂

智能工厂涉及产品研发、设计、计划、工艺到生产、服务(包括销售、维护和回收)整个产品生产周期过程,将其归纳于网络化的智能生产系统中,为客户提供个性化生产服务。

2、面向环境、面向能源、面向材料的绿色制造技术与智能生产

智能生产主要涉及整个工厂的生产物流管理、人机互动以及3D技术在工业生产过程中的应用等,集初步智能手段和智能系统等新兴技术于一体,高效、节能、绿色、环保、舒适的人性化生产。

 

以下附带三篇在数字化企业网关于智能工厂全面解读的文章,《数字化工厂、智能工厂和智能制造》、《从“三元战略”到“六维智能”的智能工厂理念》和《从“三元战略”到“六维智能”的智能工厂理念》

 

 

 

 

 

 

 

数字化工厂、智能工厂和智能制造

随着新一轮工业革命的发展,工业转型的呼声日渐高涨。面对信息技术和工业技术的革新浪潮,德国人提出了工业4.0战略,美国人出台了先进制造业回流计划,中国加紧推进两化深度融合,并于今年发布了中国制造2025战略。这些战略的核心都是利用新兴信息化技术来提升工业的智能化应用水平,进而提升工业在全球市场的竞争力。而早在这些战略发布之前,包括数字化工厂、智能工厂以及智能制造等概念早已为业界所熟知。但不可忽视的是,往往很多企业在提及这些概念时,容易将这些概念混为一谈,数字化工厂、智能工厂以及智能制造之间到底是否可以互相替换,这些概念之间是否存在区别?本文将就此问题进行分析和探讨。 

一、数字化工厂

对于数字化工厂,德国工程师协会的定义是:数字化工厂(DF)是由数字化模型、方法和工具构成的综合网络,包含仿真和3D/虚拟现实可视化,通过连续的没有中断的数据管理集成在一起。数字化工厂集成了产品、过程和工厂模型数据库,通过先进的可视化、仿真和文档管理,以提高产品的质量和生产过程所涉及的质量和动态性能:

 

在国内,对于数字化工厂接受度最高的定义是:数字化工厂是在计算机虚拟环境中,对整个生产过程进行仿真、评估和优化,并进一步扩展到整个产品生命周期的新型生产组织方式。是现代数字制造技术与计算机仿真技术相结合的产物,主要作为沟通产品设计和产品制造之间的桥梁。从定义中可以得出一个结论,数字化工厂的本质是实现信息的集成。

二、智能工厂

智能工厂是在数字化工厂的基础上,利用物联网技术和监控技术加强信息管理服务,提高生产过程可控性、减少生产线人工干预,以及合理计划排程。同时,集初步智能手段和智能系统等新兴技术于一体,构建高效、节能、绿色、环保、舒适的人性化工厂。

 

 

 

 

 

 

 

智能工厂已经具有了自主能力,可采集、分析、判断、规划;通过整体可视技术进行推理预测,利用仿真及多媒体技术,将实境扩增展示设计与制造过程。系统中各组成部分可自行组成最佳系统结构,具备协调、重组及扩充特性。已系统具备了自我学习、自行维护能力。因此,智能工厂实现了人与机器的相互协调合作,其本质是人机交互。 

三、智能制造

智能工厂是在数字化工厂基础上的升级版,但是与智能制造还有很大差距。智能制造系统在制造过程中能进行智能活动,诸如分析、推理、判断、构思和决策等。通过人与智能机器的合作,去扩大、延伸和部分地取代技术专家在制造过程中的脑力劳动。它把制造自动化扩展到柔性化、智能化和高度集成化。

 

 

 

 

 

 

 

 

智能制造系统不只是“人工智能系统,而是人机一体化智能系统,是混合智能。系统可独立承担分析、判断、决策等任务,突出人在制造系统中的核心地位,同时在智能机器配合下,更好发挥人的潜能。机器智能和人的智能真正地集成在一起,互相配合,相得益彰。本质是人机一体化。 

国内很多企业都在炒作智能制造,但是绝大多数企业还处在部分使用应用软件的阶段,少数企业也只是实现了信息集成,也就是可以达到数字化工厂的水平;极少数企业,能够实现人机的有效交互,也就是达到智能工厂的水平。

 

从“三元战略”到“六维智能”的智能工厂理念

一、行业背景

“工业4.0”被认为是以智能制造为主导的第四次工业革命或是工业体系革命性的生产方法,而智能工厂将是构成未来工业体系的一个关键特征。在智能工厂里,人、机器和资源如同在一个社交网络里自然地相互沟通协作,生产出来的智能产品能够理解自己被制造的细节以及将如何使用,能够回答“哪组参数被用来处理我”、“我应该被传送到哪里”等问题。同时,智能辅助系统将从执行例行任务中解放出来,使他们能够专注于创新、增值的活动;灵活的工作组织能够帮助工人把生活和工作实现更好地结合,个体顾客的需求将得到满足。德国工业4.0、美国GE工业互联网均是“工业4.0”的典范,但中国有自己特殊的国情,中国制造企业打造智能工厂,不能完全照搬国外模式,而是既要紧跟国际先进理念,还要符合中国企业的实际情况。 

 二、概念内涵

 美国与德国的工业发展战略核心均为CPS(Cyber- Physical System)系统,是典型的二元战略。美国是C(Cyber,包括:数字、信息、网络等虚拟世界)+P(Physical,包括机器、设备、设施等实体世界),德国是P+C,两国均是基于高素质劳动者、国家人力匮乏、企业高协同化、高法制化的基础之上而提出的战略;而中国装备水平较美国和德国有一定差距,数据采集分析决策能力也有局限,但中国具有人力资源优势,所以应该充分挖掘人的作用。因此,中国制造企业推进工业发展不能完全照搬发达国家的二元战略,更宜采用CPPS(Cyber-Person-Physical System)人机网三元战略,充分体现人的能动作用。

 

 

 

 

 

 

 

图1 三元战略

所谓“三元战略”,包括劳动者及其技能、素养、精神、组织、管理等,CPPS战略体现了以人为本,继续发挥与挖掘了中国在人力资源方面的优势,扬长补短,实现人与赛博、物理虚实两世界的融合和迭代发展,构建以赛博智能为目的的人机网三元战略方案更符合中国国情。 

所谓“六维智能理论”,就是在设备联网+远程数据采集的基础上,实现智能化的生产过程管理与控制,从6个方面打造适合中国国情的智能工厂,这6个方面包括: 

1、智能计划排产,是从计划源头上集成ERP,进行APS高级排产。

首先从计划源头上确保计划的科学化、精准化。通过集成,从ERP等上游系统读取主生产计划后,利用APS进行自动排产,按交货期、精益生产、生产周期、最优库存、同一装夹优先、已投产订单优先等多种高级排产算法,自动生成的生产计划可准确到每一道工序、每一台设备、每一分钟,并使交货期最短、生产效率最高、生产最均衡化。这是对整个生产过程进行科学的源头与基础。 

2、智能生产协同,从生产准备过程上,实现物料、刀具、工装、工艺的并行协同准备。

为避免贵重的生产设备因操作工忙于找刀、找料、检验等辅助工作而造成设备有效利用率低的情况,企业要从生产准备过程上,实现物料、刀具、工装、工艺等的并行协同准备,实现车间级的协同制造,可明显提升机床的有效利用率。 

还比如,随着3D模型的普及,在生产过程中实现以3D模型为载体的信息共享,将CATIA、PRO/E、NX等多种数据格式的3D图形、工艺直接下发到现场,做到生产过程的无纸化,也可明显减少图纸转化与看图的时间,提升工人的劳动效率。 

3、智能的设备互联互通,是CPS信息物理系统的典型体现,实现数字化生产设备的分布式网络化通讯、程序集中管理、设备状态的实时监控等。

无论是工业4.0、工业互联网、还是中国制造2025,其实质都是以CPS赛博物理系统为核心,通过信息化与生产设备等物理实体的深度融合,实现智能制造的生产模式。对企业来讲,将那些贵重的数控设备、机器人、自动化生产线等数字化设备,通过DNC/MDC的机床联网、数据采集、大数据分析、可视化展现、智能决策等功能,实现数字化生产设备的分布式网络化通讯、程序集中管理、设备状态的实时监控等,就是CPS赛博物理系统在制造企业中最典型的体现。 

DNC是Distributed Numerical Control的简称,意为分布式数字控制,国内一般统称为机床联网。DNC系统通过一台服务器可实现对所有数控设备的双向并发通讯,支持Fanuc、Siemens、Heidenhain等上百种控制系统,兼容RS232、422、485、TCP/IP、无线等各类通讯方式,具有远程通讯、强制上传等常见功能,将数控设备纳入整个IT系统进行集群化管理。

管理学大师彼得•德鲁克曾经说过“你如果无法度量它,就无法管理它”,我们不仅需要通过DNC解决互联的问题,更需要通过MDC(Manufacturing Data Collection,直译为制造数据采集,俗称为机床监控)解决数据自动采集、透明化、量化管理的问题。 

MDC通过一台计算机可以同时自动采集4096台数控设备,兼容数控机床、热处理设备(如熔炼、压铸、热处理、涂装等设备)、机器人、自动化生产线等各类数字化设备,兼容西门子等所有机床控制系统,以及三菱、欧姆龙等各类PLC的设备。 

对高端带网卡的机床,可直接采集到机床的实时状态、程序信息、加工件数、转速和进给、报警信息等丰富的信息。并以形象直观的图形化界面进行显示,比如,绿色表示机床正在运行,黄色表示机床开机没干活,灰色表示没开机,红色表示故障,鼠标在机床图形上一点,相关的机床详细信息就全部实时地显示出来,实现对生产过程的透明化、量化管理。

 

如果要实现更逼真的显示效果,可通过3D虚拟技术以立体的形式展现车间、设备、人体模型等,可以实现人体的行走、机床的放大缩小、设备信息的实时显示等各种操作,给用户一个更直观、形象的展现。 

4、智能资源管理,包括对物料、设备、刀具、量具、夹具等生产资源进行精益化管理、库存智能预警等。

通过对生产资源(物料、刀具、量具、夹具等)进行出入库、查询、盘点、报损、并行准备、切削专家库、统计分析等功能,有效地避免因生产资源的积压与短缺,实现库存的精益化管理,可最大程度地减少因生产资源不足带来的生产延误,也可避免因生产资源的积压造成生产辅助成本的居高不下。 

5、智能质量过程管控,是对影响产品质量的生产工艺参数进行实时采集、控制,确保产品质量。

除了对生产过程中的质量问题进行及时的处理,分析出规律,减少质量问题的再次发生等技术手段以外,在生产过程中对生产设备的制造过程参数进行实时的采集、及时的干预,也是确保产品质量的一个重要手段。 

通过工业互联网的形式对熔炼、压铸、热处理、涂装等数字化设备进行采集与管理,如采集设备基本状态,对各类工艺过程数据进行实时监测、动态预警、过程记录分析等功能,可实现对加工过程实时的、动态的、严格的工艺控制,确保产品生产过程完全受控。

当生产一段时间,质量出现一定的规律时,我们可以通过对工序过程的主要工艺参数与产品质量进行综合分析,为技术人员与管理人员进行工艺改进提供科学、量化的参考数据,在以后的生产过程中,减少不好的参数,确保最优的生产参数,从而保证产品的一致性与稳定性。

6、智能决策支持,是基于大数据分析的决策支持,形成管理的闭环,以实现数字化、网络化、智能化的高效生产模式。

在整个生产过程中,系统运行着大量的生产数据以及设备的实时数据,在兰光创新的很多用户里,企业一个车间一年的数据量就高10亿条以上,这是一种真正的工业大数据,这些数据都是企业宝贵的财富。对这些数据进行深入的挖掘与分析,系统自动生成各种直观的统计、分析报表,如计划制订情况、计划执行情况、质量情况、库存情况、设备情况等,可为相关人员决策提供帮助。这种基于大数据分析的决策支持,可以很好地帮助企业实现数字化、网络化、智能化的高效生产模式。 

总之,通过以上6个方面智能的打造,可极大提升企业的计划科学化、生产过程协同化、生产设备与信息化的深度融合,并通过基于大数据分析的决策支持对企业进行透明化、量化的管理,可明显提升企业的生产效率与产品质量,是一种很好的数字化、网络化的智能生产模式。

 

 

 

 

 

 

 

 

 

图2 六维智能

 三、应用前景

 “六维智能”分别从计划源头、过程协同、设备底层、资源优化、质量控制、决策支持等6个方面着手实现智能工厂,这6个方面涵盖了工业生产的6个重要环节,可实现全面的精细化、精准化、自动化、信息化智能化管理与控制,通过底层设备的互联互通、基于大数据分析的决策支持、可视化展现等技术手段,实现生产准备过程中的透明化协同管理、数控设备智能化的互联互通、智能化的生产资源管理、智能化的决策支持,从而全方位达到智能化的生产过程管理与控制。  

 从“六维智能”解决方案在青岛海尔模具有限公司的实际应用效果来看,较好地达到了智能化生产过程管理与控制的目的。该系统是专门为海尔模具定制的,是海尔模具生态圈的主要组成部分,系统以生产设备为核心,从设备底层层面实现了机床、对刀仪等设备的互联互通与大数据分析,从生产管理层面实现了协同准备并行作业,从展现层面实现了生产信息的可视化。实施本系统后,操作工的作业效率从原来1个人管理3台设备提升到7~8台设备,设备利用率提升25%以上,使生产管理更加透明、科学、高效,应用效果比较明显,在海尔模具的数字化制造与管理中发挥了重要的作用。

 

工业4.0落地战略:一个网络、两大主题、三项集成

近期,随着“工业4.0”的在网络上越炒越热,我国也推出了“中国制造2025”战略,在国家战略需求的驱动下,中国对于制造大国向制造强国的迈进之路也陡然提速,这将对中国制造转型升级打通主动脉。就企业层面来说中国版工业4.0如何落地将成为重点,如何通过信息技术和制造技术的深度融合,打通一切、联通一切是企业信息化建设的目标。 

工业4.0是什么?每个人站在不同的角度会有不同的理解,是互联、集成(纵向、横向、端到端)、数据、创新、服务、转型或是CPS、是智能工厂、是智能制造亦或是国家战略、企业目标。工业4.0核心内容就是建一个网络、三项集成、大数据分析、八项计划和研究两个主题。 

建一个网络:信息物理网络系统(CPS)

CPS是英文CyberPhysical System的缩写,就是讲物理设备连接到互联网上,让物理设备具有计算、通信、精确控制、远程协调和自治等五大功能,从而实现虚拟网络世界与现实物理世界的融合,将网络空间的高级计算能力有效的运用于现实世界中,从而在生产制造过程中,与设计、开发、生产有关的所有数据将通过传感器采集并进行分析,形成可自律操作的智能生产系统。

 

 

 

 

 

 

 

 

 

 

a) CPS可以将系统资源、信息、物体以及人紧密联系在一起,从而创造物联网及相关服务,并将生产工厂转变为一个智能环境。 

b) CPS将提供全面、快捷、安全可靠的服务和应用业务流程, 

c) 支持移动终端设备和业务网络中的协同制造、服务、分析和预测流程等。 

在工业4.0蓝图中,连接一切的信息物理网络(CPS)是实现智能工厂、智能生产的基础,工业4.0蓝图给了一个CPS网络的概念模型(如上图),在这个模型中,我们看到了“服务”的概念,传感器服务、控制服务、通讯服务、校验服务、信息服务等,所有的服务形成了一个服务库,每个服务完成不同的功能,服务与服务之间相互连接,构成一个柔性的智能生产网络,每个服务来自不同的系统,产品信息服务也许来自PDM系统、生产计划服务来自ERP、订单服务来自DMS系统,生产装配指令服务来自MES、生产加工服务由设备完成,因此,整个CPS网络系统就是一个服务连接的网络,即是“务联网”的概念,通过“服务”的抽象,屏蔽了各个信息系统及物理设备的差异性,在服务层面具有共通性,因而容易建立起连接。 

服务的概念即是SOA的核心,SOA即是解决异构系统、设备、网络相互连接的技术方法,通过SOA中的企业服务总线ESB建立起一个企业的“同声翻译平台”,让企业中的异构系统、生产设备、人、客户相互联通,让这些生产要素协同工作而又保持各自的个性化特征,各要素按照自己的方式工作,通过ESB这个同声翻译平台接收信息、指令,同时将自己的状态、信息发送到ESB平台、传递给其它生产要素,从而实现智能的感知和协作。

 

 

 

 

 

 

 

 

 

CPS网络模型是一个理想的参考架构,在CPS网络模型中并没有给出怎么解决异构系统及设备间的连通性问题的技术实现方法和路径,我们都知道,对于具体的企业来说,要实现工业4.0的蓝图目标,有很多实际的困难要解决,企业的信息系统都是在不同的时期建立起来的,采用了不同的技术路线,由不同的厂商提供,技术协议不同,不能直接联通,需要点对点的写接口程序才能联通。对于生产设备,差异性就更大了,老式的设备没有通讯接口、仪表都是模拟的,新式设备的通讯协议及接口也是五花八门的,有RS232,485,以太网等,即使有相同的接口形式,其数据格式和规则可能都不一样,如果要将这些设备连接起来,一些老设备需要加装传感器、PLC控制器、RFID等,构建一个工业总线,将这些新老设备通过各种接口接入到工业总线中,使其相互联通、采集设备的数据,搞工业自动化系统的人都知道,工业自动化系统一般都遵循一个行业的标准协议:OPC,是一个比较底层的协议,一般大家熟知的SCADA系统、DCS系统都是这类性质的工业自动化网络,现在叫做“物联网”。工业自动化系统的运行方式与管理信息网络的运行方式完全不一样,数据生成的频率要高的多,一般以秒为单位生成数据,数据存储的方式也不一样,数据一般是以KEY/VALUE的方式收集和存储,俗称列存储方式,而管理信息系统,如ERP、PDM等系统的组织存储方式是以行的形式存在的,数据交换的协议以SQL、webservice、FTP、MQ、HTTP等更高级的协议通讯。所以要实现工业网络与管理信息网络的相互联通,从底层网络协议上容易实现,但是要实现数据的交换还不是那么容易,所以工业4.0中才提出了CPS网络的参考架构,力图实现“连接一切”的目标。 

下面我们参考一下SOA架构下的ESB企业服务总线架构模型,看看能不能满足CPS的要求。

 

 

 

 

 

 

 

 

 

 

 

我认为,这就是一个CPS网络系统的模型,一个可以落地的参考架构。ESB企业服务总线是SOA架构的核心,完全满足CPS的要求,它通过各种适配器与异构系统和生产设备相连,进行协议转换,数据交换通过消息的机制实现,通过消息的异步传输达到数据交换的可靠性,可以实现数据的同步及异步交换,在电信、银行、铁路、航空、电力调度中广泛应用,是一个非常成熟的数据交换平台解决方案。S0A架构是一个已经非常成熟的架构方法,实际应用已经很多年了,以前只是从纯粹的技术层面来推广,没有站在产业战略的高度来看这个问题,应该说SOA是工业4.0最佳的技术方案。

三个集成

工业4.0中的三项集成包括:横向集成、纵向集成与端对端的集成。工业4.0将无处不在的传感器、嵌入式终端系统、智能控制系统、通信设施通过CPS形成一个智能网络,使人与人、人与机器、机器与机器以及服务与服务之间能够互联,从而实现横向、纵向和端对端的高度集成,集成是实现工业4.0的重点也是难点。 

【纵向集成】 

纵向集成不是一个新话题,企业信息化发展经历了部门需求、单体应用到协同应用的一个历程,伴随着信息技术与工业融合发展常讲常新,换句话说,企业信息化在各个部门发展阶段的里程碑,就是企业内部信息流、资金流和物流的集成,是在哪一个层次、哪一个环节、哪一个水平上的集成,是生产环节上的集成(如研发设计内部信息集成),还是跨环节的集成(如研发设计与制造环节的集成),还是产品全生命周期的(如产品研发、设计、计划、工艺到生产、服务的全生命周期的信息集成)。简单点说,纵向集成就是解决企业内部信息孤岛的集成,工业4.0所要追求的就是在企业内部实现所有环节信息无缝链接,这是所有智能化的基础。 

纵向集成主要解决企业内部的集成,即解决信息孤岛的问题,解决信息网络与物理设备之间的联通问题。

【横向集成】

横向集成是企业之间通过价值链以及信息网络所实现的一种资源整合,是为了实现各企业间的无缝合作,提供实时产品与服务。在市场竞争牵引和信息技术创新驱动下,每一个企业都是在追求生产过中的信息流、资金流、物流无缝链接与有机协同,在过去这一目标主要集中在企业内部,但现在远远不够了,企业要实现新的目标:从企业内部的信息集成向产业链信息集成,从企业内部协同研发体系到企业间的研发网络,从企业内部的供应链管理与企业间的协同供应链管理,从企业内部的价值链重构向企业间的价值链重构。横向集成是企业之间通过价值链以及信息网络所实现的一种资源整合,为实现各企业间的无缝合作,提供实时产品与服务,推动企业间研产供销、经营管理与生产控制、业务与财务全流程的无缝衔接和综合集成,实现产品开发、生产制造、经营管理等在不同的企业间的信息共享和业务协同。

横向集成主要实现企业与企业之间、企业与售出产品之间(如车联网)的协同,将企业内部的业务信息向企业以外的供应商、经销商、用户进行延伸,实现人与人、人与系统、人与设备之间的集成,从而形成一个智能的虚拟企业网络。制造业普遍存在的工程变更协同流程就是这样一个典型的横向集成应用场景。

【端到端的集成】

端对端集成是指贯穿整个价值链的工程化数字集成,是在所有终端数字化的前提下实现的基于价值链与不同公司之间的一种整合,这将最大限度地实现个性化定制,从某种意义上来讲,端到端的集成是一个新理念,各界对于端到端集成有不同的理解。

什么是端到端?顾名思义,所谓端到端就是围绕产品全生命周期,流程从一个端头(点)到另外一个端头(点),中间是连贯的,不会出现局部流程、片段流程,没有断点。从企业层面来看,ERP系统、PDM系统、组织、设备、生产线、供应商、经销商、用户、产品使用现场(汽车、工程机械使用现场)等围绕整个产品生命周期的价值链上管理和服务都是整个CPS信息物理网络需要连接的端头(点)。

端到端集成就是把所有该连接的端头(点)都集成互联起来,通过价值链上不同企业资源的整合,实现从产品设计、生产制造、物流配送、使用维护的产品全生命周期的管理和服务,它以产品价值链创造集成供应商(一级、二级、三级……)、制造商(研发、设计、加工、配送)、分销商(一级、二级、三级……)以及客户信息流、物流和资金流,在为客户提供更有价值的产品和服务同时,重构产业链各环节的价值体系。

由于整个产业生态圈中的每一个端头所讲的语言(通讯协议)都不一样,数据采集格式、采集频率也不一样,要让这些异构的端头都连接起来,实现互联互通、相互感知,因此就需要一个能够做到“同声翻译”的平台,这个同声翻译平台就是企业服务总线,在这样一个平台上实现书同文、车同轨。这样就解决的集成的最大障碍,实现互联互通就容易了。

端到端的集成即可以是内部的纵向集成内容,也可以是外部的企业与企业之间的横向集成内容,关注点在流程的整合上,比如提供用户订单的全程跟踪协同流程,将用户、企业、第三方物流、售后服务等产品全生命周期服务的端到端集成。

横向、纵向、端到端三个集成的实现,不论技术层面还是业务层面在SOA信息集成都能找到相应的解决方案。

什么是“智能工厂”和“智能生产”?

“智能工厂”是未来智能基础设施的关键组成部分,重点研究智能化生产系统及过程以及网络化分布生产设施的实现。

“智能生产”的侧重点在于将人机互动、智能物流管理、3D打印等先进技术应用于整个工业生产过程,从而形成高度灵活、个性化、网络化的产业链。

在工业4.0的战略蓝图中,把智能生产描绘成工厂可以为单件小批量的单个客户提供个性化生产服务,而不是只能按照固定的生产流程生产。所谓“智能”,我的理解是具备“智慧”的能力,智慧首先要具备足够的知识,对自己的了解,对外界事物的了解,都可以称为知识。而将具备的知识进行关联和联想,能够形成一个知识网络,对周边事物能够感知和关联,找出知识点之间的关联关系以及事物之间的潜在联系,具备思考的能力,这即是“智慧”的概念。在工业4.0战略中提到的连接万物、感知环境中的人、机器设备、产品、用户、信息,是将生产环境中的一切事物、物体、人的静态信息及动态信息进行融合和感知、传递交换,从而达到协同工作的场景,实现智能生产、智能工厂的目标。

在生产现场,要实现智能生产,还需要业务规则的驱动,如事件管理机制、生产优化排程等都是属于业务规则类的系统,通过事件管理机制,可以实时的拾取生产现场、用户使用现场等一些特别事件,这些事件如果不及时处理,有可能演变为一个损失很大的事故,通过这些事件的预先定义,一旦发生,就可以通过数据驱动对应的处理流程,协调各个部门、人员做相应的协同处理,防患于未然,这才是真正的智能生产,让一切连接,让一切透明。所有的系统、设备都是按照数据驱动的流程、规则协作运行,真正实现数据驱动流程、流程驱动业务、流程驱动设备。而业务规则可以根据市场需要、用户订单和个性化需要随时变更,以达到智能的驱动生产,实现产品的个性化服务。 

CPS、三个集成是实现智能工厂的前提条件

工业4.0战略中智能工厂、智能生产的实现是一个美好的愿景,制造业发展的趋势,需要经过一个艰苦的实现过程,不是一朝一夕能够达到的目标,尤其中国的企业大部分兼有工业1.0,2.0,3.0,4.0的痕迹,要一步跨越到工业4.0的步伐需要克服很多障碍,需要一个整体的规划,先摸清楚自己的状态,看看处于哪个阶段,然后按照CPS、三个集成的内容,分阶段分批实现,信息化发展水平好的企业,单体系统的建设基本完成,这个时候可以建设CPS网络,实现三个集成中的纵向集成,先解决内部信息孤岛的问题、协同流程的问题,当内部的集成达到一定高度以后,就可以扩展到横向的集成,将CPS网络延伸到外部互联网,打通内外部的协同,实现B2C,B2B。进一步,将CPS网络延伸到生产设备,实现物与物,人与物,系统与物的相连,实现端到端的集成。

实现“智能工厂”和“智能生产”的标志是:生产流程智能化,生产设备动态适应个性化的产品需求,是实现工业4.0的关键。